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Nonperturbative approach to quantum Brownian motion
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Starting from the Caldeira-Leggett model, we derive the equation describing the quantum Brownian motion,
which has been originally proposed by Dekker purely from phenomenological basis containing extra anoma-
lous diffusion terms. This nonperturbative approach yields explicit analytical expressions for the temperature
dependence of the diffusion constants. At high temperatures, additional momentum diffusion terms are sup-
pressed and classical Langevin equation can be recovered and at the same time positivity of the density matrix
is satisfied. At low temperatures, the diffusion constants have a finite positive value. However, below a certain
critical temperature, the master equation does not satisfy the positivity condition as proposed by Dekker.
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The problem of quantum Brownian motion is a long-
standing and challenging problem [1-3], as it forms the un-
derlying basis of nonequilibrium phenomena such as dissipa-
tive and relaxation dynamics of quantum systems [4,5].
Quantum dissipative dynamics has application in a wide va-
riety of problems, starting from quantum cosmological mod-
els [6,7] to reaction-rate theory [8]. Unlike the classical non-
equilibrium problem, quantum dynamics has additional
complexity due to the Heisenberg uncertainty principle. Vari-
ous attempts have been made to address this problem, which
include semiclassical approaches using Wigner distribution
function [9], phenomenological models [10-12], and Boltz-
mann’s collision terms [13]. On the other hand, there have
been attempts to obtain the master equation describing the
time evolution of the density matrix of open quantum sys-
tems through toy microscopic models [6,14,15], where the
diffusion constants have explicit time dependence [6,16]. In-
dependently, a class of master equations has been put for-
ward [17], purely from mathematical consideration, which
guarantees the positivity of the density matrix, where the
time evolution of the system takes place only through the
physical states, and the master equation is commonly known
to belong to the Lindblad class. Most of the master equations
describing the nonequilibrium quantum dynamics suffer
from the fact that they either do not belong to the Lindblad
class or the correct classical limit cannot be recovered at high
temperatures.

Dekker [12] proposed a phenomenological model of
quantum Brownian dynamics, which contains extra diffusion
terms in order to preserve Heisenberg’s uncertainty condition
as well as positivity of the density matrix [18,19]. However,
the microscopic origin of the extra diffusion constants in
Dekker’s model is not clear and can only be justified in the
weak-coupling limit. Moreover, most of the derivations of
the master equation rely on the facts that the autocorrelation
function of the random force on the Brownian particle is
short ranged at high temperature and that the system is as-
sumed to be Markovian. But in practice, the effective action
obtained has a memory kernel which can decay as a power
law at low temperatures [20]. In fact, the random force in
quantum Brownian motion shows clear deviation from the
Markovian limit [21]. This nonlocality makes the problem
very complex.

In this paper, we propose a mechanism of deriving the

1539-3755/2009/79(5)/051111(5)

051111-1

PACS number(s): 05.30.—d, 03.65.Yz, 05.40.Jc

master equation from a microscopic theory, which can be
used to study complex problems in both the strong- and
weak-coupling limits. The technique involves resummation
of memory effects along the classical paths, which is both
intuitively transparent and mathematically simpler. For sim-
plicity and clarity we take the example of the Brownian par-
ticle for illustrating this technique.

We show that over a wide range of temperatures, the mas-
ter equation satisfies the positivity condition and at the same
time reproduces the classical Langevin dynamics at high
temperatures. Although, the diffusion constants are finite and
well behaved even at sufficiently low temperatures, the posi-
tivity of density matrix breaks down below a certain tem-
perature depending on the damping rate of the system. Be-
low this temperature, the transient behavior dominates the
dynamics and the diffusion constants may become time de-
pendent.

A very well-known description for the dissipative phe-
nomena and relaxation dynamics of classical system is given
by the Langevin equation

G(1) ==2y4(t) + 6(1), (1)

where ¢(7) is the position of the Brownian particle, the dot
denotes derivative with respect to time, vy is the damping
constant, and 6(z) is related to the fluctuating force acting on
the particle, whose autocorrelation function is given by
(B(1)0(t")y=I"8(t—1t"), where I'=2kzTM 1, T is the tempera-
ture of the bath and M is the mass of the Brownian particle.
However, in most cases, the microscopic details behind this
dissipation are not well known.

Many microscopic models have been proposed which de-
scribe the dissipative dynamics of a heavy particle in the
presence of a heat bath [22-26]. One of these is a model,
where the heat bath consists of a collection of harmonic os-
cillator and is in recent times known as the Caldeira-Leggett
model [14]. In this model, the full Hamiltonian H is given by
H=H,+Hpz+H;, where H,y, Hp, and H; are the system, bath,
and interaction Hamiltonians, respectively, and are given by

2

H, = 2”—M +V(g), )

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.79.051111

SUBHASIS SINHA AND P. A. SREERAM

P? 1 22
Hg= 2 | ==+ -mw;Q? |, (3)
i 2m[‘ 2
~ 1 G
H1=_‘]2C5Qi+qzz PER (4)

[Aad}

where g and p are the position and momentum operators of
the heavy particle having mass M, V(g) is the potential in
which the heavy particle is moving, Q; and P; are the posi-
tion and momentum operators of the bath oscillators whose
mass and frequency of oscillation are given by m; and w;,
respectively, and C; is the coupling strength between the sys-
tem and the ith oscillator in the bath. Following the work in
[25], the time evolution of the position operator can be writ-
ten as

Mg+ f dra(t—7)g(7)+V'(q) = F(1), (5)
0

where the prime denotes the derivative with respect to the
position variable. The operator valued random force, F(t), is
related to the statistical distribution of the bath variables Q;
and P,. In order to recover the classical Brownian dynamics
with short-time memory effect at high temperatures, the fre-
quency dependence of the coupling is typically taken to be
3,C?/ (mw?) = My, where vy is the damping constant. Ac-
cording to the Ehrenfest theorem, if the position and momen-
tum operators are replaced by their classical values, then Eq.
(5) translates to the classical Langevin equation in the limit
of h— 0, where the force autocorrelation function takes the
form of a delta function obeying classical fluctuation-
dissipation theorem [4].

The classical Langevin equation and the quantum master
equation differ in the sense that while the classical fluctua-
tions in the canonical coordinates are controlled only by the
scales set by the temperature and the dissipation constant, the
quantum fluctuations have an additional scale given by %
which appears due the Heisenberg uncertainty principle.
Moreover, the evolution of the operators themselves has to
be unitary. Apart from the semiclassical techniques, new
methods have been proposed to take into account the con-
straints imposed by “uncertainty principle” in the quantum
case [23]. Among these methods, the master equation of the
density matrix p is more suitable to describe dissipative dy-
namics of quantum systems. The quantum dynamics which is
governed by the time-dependent Schrodinger equation de-
scribes the pure state, whereas the dissipative dynamics in-
troduces the concept of mixed state, where trace of p is less
than unity. The evolution equation of the reduced density
matrix of the system can be obtained by tracing out the bath
degrees of freedom.

Using the Feynman-Vernon method [27], the dissipative
dynamics of the reduced density matrix can be written in
terms of the influence functional, which is obtained after
integrating out the bath degrees of freedom Q;’s. The main
assumption of this method is that the subsystem is uncorre-
lated with the bath at the initial time. Hence the total density
matrix at time =0 is given by p{(0)=p,(0) ® p5(0), where
Pa» g, and pr are the density matrix of the subsystem, bath,
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and the total system, respectively. However, several authors
have considered a correlated initial state, where the sub-
system and bath density matrix cannot be factorized. For
example, Hakim and Ambegaokar [28] compared the two
cases of uncorrelated and correlated initial conditions and
showed that, for the correlated initial condition, different
transient behaviors can be obtained at time scales larger than
the inverse cutoff frequency of the bath, in contrast to the
uncorrelated initial conditions. This was further extended by
Grabert and co-workers [29,30]. In this paper, we study the
long-time behavior beyond the transient behavior. It would,
of course, be very interesting to study the transient behavior.
We follow the usual procedure of Feynman and Vernon [27]
and show finally that we can obtain a consistent master equa-
tion, describing the time evolution of the density matrix. The
time evolution of the reduced density matrix is given by

p(ql,qz,t)=fdqidqél(ql,qz,t;q{,qé,o)p(qi,qé,O), (6)

where the propagator J(q;,4,.1;4],45,0) is given by

! ! l
1(611’112’f§91a€/2’0)=ffD%D‘Iz eXP(%Seff[‘h,%])-
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After integrating out the bath degrees of freedom, one ob-
tains the nonlocal effective action corresponding to the dis-
sipative system,

1

ﬁSeff= é(SA[QI] - Salg.]) + f (2 +2)dr, (8)
0

where S, is the action corresponding to the noninteracting
system and

Se=- 1 | T antr-9a s

3 == é fo [q_(Day(7—5)g.(s)]ds, )

where ¢+ =¢| * g, and the memory kernels are

ag(7) = E

T 2mo;

C12 ﬁwi
coth kT cos(w;7),
B

2

af)=- 3 s

i maw;

sin(w;7). (10)

It is assumed that the oscillator frequencies are continu-
ously distributed from zero to a maximum frequency ., a
value of which depends on specific physical system. Cutoff
frequency of the heat bath is chosen in such way that the
characteristic time scale of the dynamics of heavy particle is
much larger than the collision time scale 1/w,. Thus, the
summations in Eq. (11) can be replaced by integrals by in-
troducing an appropriate density of state, which will make
the memory function analytically tractable. Hence, =, can be
replaced by [dwF(w), where F(w) is the density of states of
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the bath. We choose a smooth Drude form for the density of
states given by F(w)=w?/(0’+w?) and F(w)CHw)/(2ma?)
=Myl Mo/ (o? +w2)] At any nonzero temperature, us-
ing the Drude form of density of states, the memory kernels
can be evaluated analytically by using contour integrals in
complex w plane and are given by

ap(7) = Myw; | cot(x)exp(~ w,7)

2 - n/x

+x (nW/X)z_leXp[_(”W/X)wcT] (11)
n=1

Jd
a7 = Mywca—exp[— 7], (12)
T

where x=%hw./2kgT. From the above expression of ap we
can clearly see the emergence of two-time scales—the first
being the microscopic collision time given by 1/w. and the
other time scale given by temperature, i.e., i/kgT. It is inter-
esting to note that in the high-temperature regime, ay is short
ranged over the thermal time scale while the time scale over
which «; decays is given only by the collision time scale,
which is independent of temperature. However, as the tem-
perature is reduced, at some point, the thermal time scale
dominates over the collision time scale, giving rise to a non-
local memory kernel which has a power-law decay.

We now proceed to simplify the nonlocal action, taking
advantage of the above mentioned short-ranged kernel. The
dynamics over a time scale larger than #/kgT can be studied
by assuming smooth classical trajectories and expanding the
dynamical variables in a Taylor series,

= 0
()= S LDy (13)
P

where ¢ denotes the Ith derivative of ¢ with respect to time.
We now insert Egs. (11) and (13) into Eq. (9). Neglecting the
total derivative terms which generate the boundary terms in
the action, thereby leaving the Lagrangian invariant, we ob-
tain

s EW oy | Pastmar. s

==y 2

The transient term in the integral comes in the form of
expl—(kgT/#)7]. Thus for 7>7/kgT, we obtain

2R(T) ﬁX |: 2()

—22(“)2( 2( )mazm)] (15)

wc m=0

This could be thought of as an effective “high-temperature”
expansion of the nonlocal effective action. Similarly, one can
evaluate 3; which gives
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= 4-(1)4.(7),

P (16)

where the higher order terms in the expansion of ¢,(s) have
been neglected since they fall off as 1/ w,.

We have thus transformed a highly nonlocal action into a
local action containing higher derivative terms. While in
general this may seem to be a very complicated expression to
work with, we show below that in at least the case of a
Brownian particle there is considerable simplification of the
expression which allows us to obtain exact results.

For the free particle, the general dynamical equation for
any order of time derivative of the position coordinate can be
written as

-1
q(n) - (_2—,yn

o p. (17)

Substituting Eq. (17) in Eq. (15), we obtain

(1) = ( 7)
2
(ﬂ)coth(ﬂ>
Myo | 42(7)) \ . o,
5 -1
hx 4+ (27)
1+|—
wC
(18)
Thus, the effective action is given by
1 ! M .
7 Sett = ﬁ dT 5 9+4-= YMq-q.
2kpTyM (7 )
- B—zf diq’ + ag’l, (19)
0
where
h h
k ?C th(k ?) :
a=-2 B (20)

45 ’

assuming y<<w,.. It is important to note that by using the
dynamical equation of canonical coordinates and the resum-
mation method we have converted the nonlocal action into
an effective action which is local and quadratic in the canoni-
cal coordinates as well as independent of the cutoff fre-
quency o, of bath oscillators. Inserting the above form of the
effective action into Eq. (7) the time evolution of the density
matrix can be evaluated.

Following the prescription of Caldeira and Leggett [14],
we consider the change in density matrix from ¢ to
t+€ within a small time interval € in order to obtain the
master equation in a differential form. To do so we expand
both side of Eq. (6) up to leading order in e. Within the
small time € we approximate ¢,=(x—x')/e=p/€ and
g>»=(y-y')/ €=,/ e. Now Eq. (6) reads
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9P _ £ _
pre —J f dp.dp- eXP{heM&(B- 2yx_é€)

2k, TYM 2
_ Bﬁ—]<ag+ a%)p(x—ﬁl,y— Bz,l‘):| ,
(21)

where B,=(B,+B,)/2 and B_=B,-B,. We expand p up to
second order in S, which is equivalent to expanding up to
first order in €. After doing some algebra and performing the
Gaussian integrals we obtain the master equation describing
the time evolution of the density matrix,

@_ﬁ[@ @]_y(x_y)(ﬂp_@)

gt 2M| 9 gy ax  dy
s o)
+—D, (x — + —+—
0 pal y)<a dy M\ ox  dy P
D
- -y, (22)

where different diffusion constants are given in terms of a by

szT'ya
= (23)
D,,=4vksTa, (24)
D,,=2ksTM¥(1 +4~a), (25)

where « is given by Eq. (20). The above form of the master
equation has been proposed earlier phenomenologically [12]
in the context of a Brownian particle in a harmonic trap. It
was shown that in order to satisfy the Heisenberg uncertainty
principle in quantum dissipative systems, the diffusion con-
stants must satisfy the following relation [18]:

%
2
Aszquq_qu_ 4

=0. (26)
This is also known as the “positivity” condition since the
master equation in Dekker’s form satisfying the above con-
dition can be recast into the Lindblad form [19]. It is relevant
to note here that the phenomenological form of the diffusion
constants obtained in [12] can be justified only in the weak-
coupling limit. In contrast, the problem we are addressing is
to obtain the diffusion constants for a free Brownian particle,
which is intrinsically a strong-coupling problem, from a mi-
croscopic theory.

The mean-square momentum and position are given, re-
spectively, by

D hy
= =22 = Mp th(—) 27
) 2y Y co kT (27)

and
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2
D,,+4M*y'D,, - 4M7qul _ kLTt

@) ~ T o )

The value of (p?) recovers the equipartition results at high
temperatures. The exact result is known to have an ultravio-
let divergence [5], which can be regulated by the parameter
hw,/kgT, which is taken to be small at high temperature. In
contrast, in our calculation, the results are independent of
hw, and depend only on the dimensionless parameter
hylkgT. However, for reasonable values of the cutoff fre-
quency, the above result matches quite well with the known
results [5].

It is interesting to note that the long-time behavior (x?)
corresponds to the exact result and matches the classical be-
havior.

At high temperatures, the diffusion constants behave as,

2 2

D,,=2MykyT(1+5(12)%), D,y=¢i2:, and D,,=%%. The
forms of these diffusion constants are very similar to those
obtained earlier [10]. However, we would like to point out
that the diffusion constant qu, in our case, is independent of
the cutoff parameter w, unlike the earlier result. It is also
interesting to note that the diffusion constants D,, and D,
both originate from quantum effects and vanish at high tem-
peratures as 1/kgT. However, at high temperatures, A ap-
proaches a value /%7y?/12 which preserves the positivity con-
dition of the master equation. At zero temperature, the
diffusion constants are finite, positive, and proportional to 7,
similar to the form proposed by Dekker [12]. However, A
becomes negative at zero temperature, violating the positiv-
ity criterion. We estimate a critical temperature 7~ 0.4% 7,
below which the above form of the master equation is not
valid and transient behavior as well as long-range memory
effects become crucial.

To summarize, within our scheme of calculation, we have
shown that the master equation obtained from the micro-
scopic Caldeira and Leggett [14] model satisfies the positiv-
ity condition and belongs to the Lindblad class for wide
range of temperatures, above the critical temperature Ty,
Analytic form for the diffusion constants has been obtained
for any arbitrary temperature and is independent of the cutoff
[frequency of the heat bath. It is interesting to note that at
high temperatures all the anomalous diffusion constants van-
ish as 1/T, which preserves the structure of classical Brown-
ian motion. At the same time, the diffusion constants con-
spire in such a way that they satisfy the Dekker criterion
A>0 and hence the time evolution of the open quantum
system takes place only through physical states. At low tem-
perature, the diffusion constants have their origin from
purely quantum effects. However, below the temperature
=fiy, Dekker’s positivity condition is violated, indicating
that the long-range memory effect may become important in
the time evolution of the system. The novelty of this method
is the fact that it requires only the knowledge of the classical
paths and hence can be applied to address more complex
physical problems in a consistent manner.

We would like to thank P. K. Panigrahi and S. Dattagupta
for helpful discussions and critical reading of the paper.
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